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Solutions of the graded classical Yang-Baxter equation and 
integrable models 

R B Zhang, M D Gould and A J Bracken 
Depanment of Mathematics, University of  Queensland, Brisbane Qld 4072, Australia 

Received 4 September 1990 

Abstract. Linear superalgebraic equations giving rise to solutions of the graded classical 
Yang-Baxter equation are developed and solved explicitly. The connection of these 
equations with the theory of Lie bi-superalgebras is pointed out, and the possibility of 
using the solutions of the graded classical Yang-Baxter equation IO construct integrable 
supersymmetric models is discussed. 

1. Introduction 

The Yang-Baxter equations have long been known to embody the underlying sym- 
metries of two-dimensional integrable models [I-31, and recent research has also 
revealed that they have a profound connection with many branches of mathematical 
physics and pure mathematics, notably conformal field theories [4], quantum groups 
[4,5] and quantum supergroups [6,7], Lie bi-algebras [SI and knot theory [9]. 

Let V be a finite-diemensional vector space which may or may not be i2,-graded; 
then the quantum Yang-Baxter equation in End( VO VO V) reads 

R , ~ ( X ) R , , ( X Y ) R ~ ( Y )  = R x ( Y ) R ~ ( x Y ) R ~ ~ ( x )  X , Y € C  (1) 

R ( x ) = E  E ' ( x ) O D , ( x )  E ' ( x ) ,  D , ( x )  E End( V) vs 
where R I 2 ( x )  etc stem from an R ( x ) E  End( VO V ) .  Expressing R ( x )  as 

then we have 

R I 2 ( x )  = E  E ' ( x ) O D , ( x ) O l  

R J x )  =I E ' ( x ) O l O D , ( x )  

R , , (x )  =I l O E ' ( x ) O D , ( x ) .  

Note that when V i s  Z2-graded, 0 should be understood as the graded tensor product 
[lo]. When the matrix elements of R ( x )  are interpreted as Boltzmann weights of 
two-dimensional lattice models, each non-trivial solution of the Yang-Baxter equation 
gives rise to an integrable statistical mechanics model. 

A systematic classification of the solutions of the nonlinear functional equation (1) 
is beyond reach at present. However, a systematic method does exist for constructing 
trigonometric and rational solutions, using the recently introduced techniques [6, 111 
of quantum groups and quantum supergroups. 
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Just as the classical limit of a quantum mechanical system is recovered when 
Planck's constant h is sent to zero, the classical Yang-Baxter equation is obtained as 
the lowest-order non-trivial term in the expansion of equation ( 1 )  in powers of a small 
dimensionless constant II which can be regarded as proportional to h. Let us write 

R ( x ) =  K ( x ) [ l O l + ~ r ( x ) + O ( ~ * ) ]  ( 2 )  

where K ( x )  is a scalar function. Inserting ( 2 )  into ( 1 )  and considering the lowest-order 
surviving terms: we obtain the nonlinear functional equation 

(3) 

where the notation r ,* (x )  etc is self-evident. I n  the literature, this equation is sometimes 
also written as 

(3') 

[ r d x ) ,  r13(x~) l+[r12(x) .  r 2 3 ( ~ ) l + [ ~ & ~ ) ,  r A y ) I  = 0 

[ r d u ) .  rl , (u+ u ) l + [ r d u ) ,  r2,(u)I+[rI3(u+ U), r2,(u)l = 0. 

Obviously (3') can be transformed into the form (3) upon using the reparametrization 
x = e", y = e". 

Equation (3) or (3') is the classical Yang-Baxter equation, which plays an important 
role in the study of classical integrable systems [2]. It also arises naturally in the theory 
of Lie bi-algebras as a consistency condition for a quasitriangular or triangular Lie 
bi-algebra [8]. For convenience of reference, we will call (3) (and (3')) the graded 
classical Yang-Baxter equation when V is a Z,-graded vector space, and refer to it as 
the classical Yang-Baxter equation when V is an ordinary vector space. 

If V is a g-module of a Lie algebra or a Lie superalgebra g, and thus affords a 
representation m of g ,  it is conceivable that (3) admits solutions of the form r s  r(g)@ 
a(g) .  In fact universal classical r-matrices in g@g can be constructed for (3). For any 

In the remainder of this paper, we will regard (3) and (3') as holding in g@gOg,  with 
g being a Lie algebra or Lie superalgebra. 

When g is a finite-dimensional simple algebra, the solutions of (3) have been 
classified by Belavin and Drinfeld [3]. Those results were extended by Leites and 
Serganova [12] to the graded case with g a simple Lie superalgebra. They gave very 

forms is by no means simple. Earlier, some examples of solutions in the graded case 
were given by Kulish and Sklyanin [13]. Subsequent to these studies, an approach to 
the quantized Yang-Baxter equation (1) has appeared, for both ungraded and. graded 
cases, based on the theory of quantum groups [ 5 ]  and quantum supergroups [6,71 
respectively. This approach yields solutions of the nonlinear equation (1) in a very 
direct way, in effect replacing the nonlinear problem with a linear one. 

It might be expected that a correspondingly direct method of attacking the classical 
equation (3) could be obtained by considering the classical limit of the quantum group 
(or supergroup) approach to (1). The main purpose of the present work is to show 
that this is indeed the case. We will study the case when g is a simple basic classical 
Lie superalgebra [14]. In particular, we will derive some linear algebraic equations by 

The solutions of these equations, which automatically satisfy the graded classical 
Yang-Baxter equation, are constructed explicitly. The possibility of constructing 
integrable supersymmetric systems from such solutions of the graded classical Yang- 
Baxter is then discussed. 

given repieseniai~on &), such Bn r.K,airiA ihen :ea& io a Joluiion in .n(gjE;(g), 

"----"I C..--- Fe- tL- --t..*:--o -F I?,\ F-- n-., -..-h h..+ +ha c+I . .~+. . -o  n F t h - r n  nnnnr-l &,srlrra. lULILIJ I U L  L l l r j  J U l U L l U l l D  U. ,J , L V L  a L L J  D u b , ,  6, V U L  L l l L  a L . u I , Y l r  V. L I . l l l 6 ' L L C L Y .  

s!odying !he c!zssic:! limit of !hc q::fi!fim snpergroop quat ions devdnped in [6j. 
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The present work reveals that there is an intimate relation between the theory of 
Lie bi-superalgebras and the graded classical Yang-Baxter equation. This of course is 
not surprising, knowing the natural connection between the classical Yang-Baxter 
equation and Lie bi-algebras. A detailed discussion of this relation will be reported 
elsewhere [ 151. 

$ 

2. Linearizing the graded classical Yang-Baxter equation 

In this section we will examine the classical limit of the quantum supergroup equations 
developed i n  [ 6 ] ,  in order to obtain two sets of linear superalgebraic equations which 
determine solutions of the graded classical Yang-Baxter equation. 

The quantum supergroup U,(g) is the quantized universal enveloping algebra of 
a simple basic classical Lie superalgebra g; it has the structure of a graded Hopf 
aigebra. Let ai, i = 1,2, . . . , N ,  N =rank of g, be a given set of simpie roots of g, such 
that there is only one odd simple root a,. Denote by H = {he,  I i = 1 , 2 , .  . . , NJ the 
vector space spanned by the Cartan generators hm, of g, and by ( , ) the invariant 
bilinear form on H * = @ E ,  Cai .  Define the matrix ( a , )  by 

a , = X a i ,  aj ) l (a j ,  ai) V j  if (a t ,  a i )  f O  

.. .. 

and 

0, = (as,  0,) V j  if (a,,a,)=O 

where a, is the unique odd simple root. For a non-zero parameter q E C, we let 

(ai, ai) # O  q(=,.  a , )P  I, otherwise qi = 

and consider the algebra generated by  {K? '  = qhh-.. $,,.fa, I i = 1,2, . . . , N }  subject to 
the following constraints 

where 

i # s  

i = s  

- ~. .. . .. 
( q ) l l * q - m ) ( q m - I * q - m + , )  ,,, ( q " - " + l f q - m + n - l  

( 4 1  q - ' ) ( q 2 * q - ' ) .  . . ( q n * q - " )  
) m > n > O  

1 n = O , m .  
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It is a matter of straightforward manipulation to check case by case for all simple 
basic classical Lie superalgebras that A :  U&)+ U,(g)OU,(g),  with 

R B Zhang et a l  

A(%,) = &, 0 9 - h " , / 2 +  9h- , /2@ &, 

defines an algebra homomorphism, which we call the co-multiplication on U,(g) .  The 
algebra homomorphism E : U,(g) -L b) defined by 

E ( & , )  = E(?=, = 0 

s ( q h . . )  = 9-h"  

& ( 9 h " # ) = & ( I ) = l  

determines a co-unit for U 9 ( g ) ;  and an antipode s: U 9 ( g ) +  U q ( g )  is defined by 

which we extend to an algebra anti-homomorphism for all of U,(g), so that 

s ( u u )  = (-I)'"I["'s(v)s(u) 

thus turning U,(g) into a Z,-graded Hopf algebra. In the above [U]. as usual, denotes 
the parity of u ~ U , ( g ) ,  defined for homogeneous elements by 

[ U 0 1  = [ u l + [ u l  vu, U E U&) 
[C,I = [LJ= 1 [ G I  = [E*,] = 0 V i Z s  [he,] = O  Vj. 

It is worth noting that in the limit q +  I .  UJg)  reduces to the universal enveloping 
algebra of g, and the co-multiplication to the familiar diagonal homomorphism J :  g+  
g O g  defined b y ~ ( a ) = a O l + I O a , V a E g .  We have shown in [6] that when g is a 
simple basic classical Lie superalgebra, the following equations for R ( x )  E U&), 
R even, 

R ( x ) A ( u )  = B ( u ) R ( x )  v u  E U&) 
( 5 )  

R( x)[ x&,,O 9 - h d 2  + 4 CO] = [ xC,O 9 hd2 + 9 - h d 2 0  &I R(  X)  

admit at most one non-trivial solution up to scalar multiples, and their solution 
automatically satisfies the Yang-Baxter equation ( I ) .  I n  ( 5 ) .  it should be understood 
that U,(g)  is in an irreducible representation T afforded by the finite dimensional 
irreducible U&-module V, and R ( x ) E  T(U,(g))@?i(U,(g)). The C , E U ~ ( ~ )  is the 
element of weight ao, where a" ,is the lowest root of g, satisfying certain defining 
relations such as 

[ C a n ,  t) = 0 i = 1 , 2 , .  . . , N 

etc. In the limit 9 +  1, &, reduces to e,,, the lowest root vector of g. The & appearing 
on the right-hand side ofthe first of  equations ( 5 )  is the opposite co-product, defined by 

A =  T , A  (6) 

T ( u O v )  = (-l)["'["lvOu (7) 

with T :  U,(g)OU,(g)+U,(g)OU,(g)  the twisting map defined by 
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for homogeneous elements U, v e U q ( g ) ,  and extended to all of U q ( g ) O U , , ( g )  by 
linearity. 

In order to study the classical limit of ( 5 ) ,  we let q = e-? and consider the small 
9 expansion of these equations. It was shown in [ 6 ]  that when 9 is near 0, R ( x )  can 
be expanded in the form (2). Now expanding (4) to the first order in 7 ,  we obtain 

A(&,)  = 0 1 +l@Zm, +fr)[&,@ hm, - hm, 0 E?=,] +0( r)*)  

A(je , )  =Im, O 1 + 1 0?=, +h[f,, Oh,, - h , , 0 f a , l + 0 ( 9 * )  

A(h, , )  = he, 0 1 + l a h a ,  

(8) 

Vi. 

Inserting (8) into the first equation of (9, we arrive at 

[&,Ol + 1 0  Ze,, r ( x ) l =  Zm, 0 k,, - hm, + O ( T )  

[Em,@] + 10?,, + ) I  =f,,@h,, - hm, @i, ( 9 )  

[ h,,@1+ IO ha,,  4x11 = O  VI 
A 

where equation (2) has also been used. Since ;",,Le,, h,, reduce respectively to em,,  f,,h.,, 
the simple and Cartan generators of the simple basic classical Lie superalgebra g, it 
follows from (9) that 

where the wedge product A is defined by 

a A b = ( I O  I - T ) ( a  0 b )  Va,  b c g  

with I: g +  g the identity map on g. 

equation 
In exactly the same way, we can obtain from the second equation of ( 5 )  the linear 

[xee,O 1 + 10 e,,, r ( x ) ]  = xemo@ he" - ha,@ e,. ( l o b )  

Equations (IQ) are the lowest order non-trivial terms in the r )  expansions of ( 5 ) ;  
thus their solutions must satisfy the quantum Yang-Baxter equation ( I )  up to the order 
r)', that is, the classical Yang-Baxter equation [ 6 ] .  We will give a more direct proof 
of this fact in the next section. Here we want to point out that (10) only gives rise to 
a subclass of trigonometric solutions of the graded classical Yang-Baxter equation, 
which may he quantized to obtain quantum R-matrices through quantizing the 
superalgebra g .  

In order to derive a set of equations similar to (10) in the rational case, we recall 
that a rational R-matrix can be obtained from a given solution R ( x )  of ( 5 )  by setting 
x = q", then taking the limit q + 1, 

R"'(u)=limR(q").  (11) 
U-1 

This limit always exists, and R'O' is a non-trivial rational function of U, which may be 
expanded in a power series in U-', 

r r2 R'''( U )  = ~ ( u )  [ I O  I +'+>+. . . 
u u  
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with ~ ( u )  a scalar function. It follows from the fact that R"'(U) satisfies the quantum 
Yang-Baxter equation that 

R B Zhang et a /  

solves the classical Yang-Baxter equation (3'). 
In the limit x = q", q + 1,  the equations in (8) simply reduce to 

[R"'(u). J(a ) l  = O  Va E g. (14) 

Thus to the first order in the U-' expansion, the above equation leads to 

[ r ( u ) , ~ ( a ) l = o  V a c g  r(u)=r , /u .  (15) 
In the following section we will explicitly construct solutions of (10) and (15) in g O g ,  
and directly show that they indeed satisfy the graded classical Yang-Baxter equation. 
Such constructions are universal in the sense that they define valid solutions in all 
representations of g. 

3. Classical r-matrices 

In this section we construct the solutions (10) and (15) and show directly that they 
satisfy the graded classical Yang-Baxter equation. But before doing this, we establish 
some notation. 

For g a simple basic classical Lie superalgehra, we denote the set of its positive 
roots by @+. Then @+=@:U@:, where @: and @: are the sets of even and odd 
positive roots of g respectively. Choose the basis 

(16) g = { e , , f m ,  h, / a  E @+, I* = L 2 , .  . . , NI 

( f . , e , ) = ( - ~ ) [ ~ ~ [ ~ ' (  = (hw, h , )  = vcv 
such that under a fixed, nondegenerate, invariant bilinear form ( , ) on g, we have 

where vpu is an arbitrarily chosen metric for the root space of g, det 7 # 0, and 
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3.1. The solution of (15) 

Consider (15) first, assuming that r ( x ) c g O g .  The only element of g O g  which 
commutes with a(g) is, up to scalar multiples, 

A=i[a( C)  - CO1 - 1 0  C] 

where C is quadratic Casimir of g. Thus r ,  must he proportional to A, and because 
(15) is invariant under scalar multiplication of r(u), we may choose r ,  = A. Therefore 

r(u)=A/u (19) 

and in the basis (16), A reads 

Therefore, the r ( u )  given in (19) satisfies the graded classical Yang-Baxter equation (3'). 

3.2. The solution of (10) 

Now we consider equation (IO).  Note that it implies 

V a e g  

[ r ( x ) + r r ( x - l ) ,  xe,,O1+ 1@e,,] = o (22) 
[ r ( X ) + r T ( y ) ,  J(a)l  = O  

where r T ( x )  = T ( r ( x ) ) .  Equations (22) then lead to 

[ r ( x ) + r T ( x - ' ) ,  a 0 1 1  = [ r ( x ) +  r T ( x - ' ) ,  1@a]  = O  V a e g  (23) 

which admits only the trivial solution in g Q g ,  i.e. 

r ( x ) + r T ( x - ' )  = O  (24) 

and needless to say (24) satisfies the second of equations (22). Now differentiating the 
first of equations (22) with respect to x, we see that 

thus dr(x)/dx is proportional to the operator A E g O g  defined in (20). Therefore, 
r(x) can he expressed as 

r ( x )  = ro+p(x)A (26) 

where r , e g O g  is x independent and p ( x )  is a scalar function. It follows from (24) that 

ro+T(ro )=O p ( x )  = -p(x?) .  (27) 
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In order to determine r, and p(x), we need to go back to equations ( loa)  and 
(lob). The first of equations (27) requires that rue  g A g ;  since it also commutes with 
a(h,), V p ,  it must be of the form 

r, = 1 v m  (-l)["]ie, O.L -(-I)["% o e.) (28) 

where the q, are scalar parameters which we now determine. Inserting (26) and (28) 
in (100) we immediately see that 

%, = 1 

q.+., = qm 

7 = q, 

=eQf 

for all simple roots a, 

if a, a +a, E @+, a, is a simple root 

if a, (I - a, E @+, a, is a simple root 

i = 1,2, . . . , N 

and this uniquely determines 

% = 1 V a  E @+. 

Therefore 

r,= 1 (-l)["]{ee@fa -(-l)'"If,Oe,}. (29) 

Finally, applying (26) and (28) to ( lob)  and utilizing the relations (18) amongst 

mCQ* 

the structure constants of g, we can easily see that p ( x ) = ( l + x ) / ( l  -x), so that 

(30) 
l + X  

1 - x  
r(x) = ru+- A 

with A and r,, given by (20) and (29) respectively. Direct computation confirms that 
(30) does indeed satisfy (3). 

4. Connection with Lie bi-superalgebras 

In this section we briefly discuss the connection of equations (IO) and (15) and their 
solutions with the theory of Lie bi-superalgebras. 

Recall that a Lie superalgebra g is a Z,-graded vector space endowed with a bracket 
structure [ ,) : g Og + g, which is (graded) skew-symmetric, 

[.I = -[,}. 7 

and satisfies the Jacobian identity 

[ , I ,  ([,IO I )  - [ , I ,  (IO[,I) = [,}. ([,IO I ) .  (io n 
The concept of Lie superalgebras may be dualized, leading to that of Lie co-superalge- 
bras. Let A be a Z,-graded vector space. It is a Lie co-superalgebra if there exists a 
co-bracket structure An: A -f A O A  which satisfies the following conditions: 

(i) An = -T.Au 

(ii) 

(iii) A, is parity preserving. 

(Ao@ I ) .  A, - ( loao) , A ,  = ( I O  T )  . (Ao@ I ) .  A0 (31) 
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The second of these equations is known as  the co-Jacobian identity. With regard to 
(iii), panty preserving means that if A, (a ) ,  a E A is expressed as A,,(a) =& aj"@a'.2' 
where a?)  and U?' are homogeneous, then [ a ] = [ a t l ' ] + [ a ? ' ]  (mod 2)Vs. Because 
of ( i ) ,  A0(A)cAnA, where A A A  is the vector space spanned by the elements 
a A b, a, b E A. 

A Lie bi-superalgebra B is a Lie superalgebra with the bracket structure [ ,}: B O B  -f 
B, and at the same time, a Lie co-superalgebra with the co-bracket A,,: B +  B O B  such 

(32) 

For a given Lie superalgebra g, assume that there exists an even element r in g @ g  

th2t the fci!e$.&g coF.pat$+!y cox&i~ox 3 satisfied: 

A d a ,  b ) )  = [ A d a ) ,  J ( b ) ) + [ a ( a ) ,  Adb)) V a ,  b E B. 

anddef ineamapA, :g- fg@g by I 

A o ( a ) = [ J ( a ) ,  rl V a c g  (33) 

in analogy to equation ( l o a ) .  Obviously, the A,, defined this way satisfies (32) and also 
preserves parity. In order for A. to define a consistent co-bracket structure on g, it 
should also meet the first two requirements of (31); and this imposes rigid constraints 
on r. Multiplying both sides of (33) by T then adding the resultant equation to (33) 
itself we arrive at 

(ho+T.ho)(")=[d(?l) ,  r + r r j  

If A,+T.A,=O as required by (i) of (31), then O=[J(a ) ,  r + r r ] , i . e .  

r f  rr  = pA 

The co-Jacobian identity requires that 

p a scalar. 

O =  [(A,,oI).A,,-(IOAo).A,-(r@T).(A,OI).Ao](a) 
= [ [ r , z ,  r l 3 l + [ r I 2 ,  r z 3 I + [ r l 3 ,  r2,1, J ( 2 ' ( a ) l  

- [ [ J ' 2 ' ( a ) .  r23+ rL1, r ~ l  V a E g  

(34) 

where 

J'"(a) = a @  1 0 1  + l @ a @  1 + I @  1 @ a  V a  E g. 

Assume that (34) holds, then a sufficient condition to guarantee the co-Jacobian identity 
is that r satisfies the graded classical Yang-Baxter equation 

[ r n 2 ,  r131+[r12 .  r ~ l + [ r ~ ~ ,  r 2 J = 0 .  (35) 
Therefore an r satisfying equations (34) and (35) defines a co-bracket structure A,, on 
g through (33), which is compatible with the bracket structure of g, thus turning g 
into a Lie bi-superaigebra. Such a Lie bi-superaigebra is caiied quasirrianguiar. 

Now we consider equation (10) and its solution (30). Set 

r = r (0 )  = r, + A 

where r, is given in (29). Then this r satisfies (35) and r +  rT = 2A. Therefore equation 
(loa) defines a co-bracket structure Ao:g+g@g on the simple basic classical Lie 
s-pe:a!gebra g, which acting on the simp!e and C.r$~n genera!ors of g gives 
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where ai, i = 1,2, . . . , N, are the simple roots of g. Since the compatibility condition 
(32) is satisfied automatically in this case, Au is uniquely specified on the whole of g. 

It is worthwhile to make the relationship between this co-bracket structure on g 
and the co-multiplication A:U,(g)+ U,(g)@U,(g) more explicit at this stage. It can 
be easily shown for the simple and Cartan generators that 

R B Zhang er al 

A,=lim (A-I ) /q  =e-" (37) 
1-0 

where = T,A as usual. To prove that (37) holds in general we need to show that 
(37) obeys the compatibility condition (32). For two homogeneous elements G, b E 

U,(g) such that when q + l , G + a , b + b ,  with a, b e g ,  we have 

Ao([a, b}) = lim {A(&) - & ( h i )  - ( - l ) ' ~ ' ' ~ ' [ A ( ~ G ) - I ( i ~ ) ] ] / q  
7 - 0  

= A,ia)J(bj  +a(a)b,(b) - ( - i  j!Y!!"!ib"jbiaiai+aibjir,iajj 

= [Ada) ,  J(b)}+[J(a) ,  Adb)}  (38) 

and this is nothing else but (32). 
The full equations (loa), ( l o b )  together with the spectral parameter-dependent 

r(x) given in (20) may be regarded as defining a co-bracket structure on the loop 
aigebra g=g@ic[x,x-!j, which is a super Kac-Moody aigebra without a centrai 
extension. More explicitly, ={a,  la, = axm, a E g, m E a}, and J :  I+ g^@g is defined 
by 

J( a,) = a,,, 0 1 + 1 0  a; 

where, on the right-hand side, a, = axm, a; = ay". The simple and Cartan generators 
of g are ea,,fm,, e,,x,f,,x-' and h,. From the results of [6] we know that (10) implies 

[ ~ ~ ' f ~ , O ~ + y - l ~ @ f , , ,  r(x/y)I=x-If , ,Oh,,-h, ,Oy-' f , .  (10c) 

Therefore equations ( loa ,  b, e )  together define a co-bracket structure Ao:&?+ 
the simple and Cartan generators of e, which extends to all the elements of 

for 
through 

- 0 l " m l -  A ~ ~ r " ~ " ~ ! + ~ @ ~ ~ , , ~ ~ ~ / ~ ~ ~  L"- a s g  ???Eh (39) 

and the fact that r(x) given in (30) satisfies the graded classical Yang-Baxter equation 
ensures that A, satisfies the coJacobian identity. 

Similarly the rational r-matrix given in (19) defines a co-bracket on g through 

A,(a,,,) = [ae""@ 1 + 1 @ad"", ~ " 1  
U - U J  

The problem of introducing a spectral parameter into the structure of a Lie 
bi-superalgebra will be examined in more detail elsewhere [15], together with a more 
systematic account of the theory of Lie bi-superalgebras. 

5. Integrable systems 

In this section we give a procedure for constructing integrable supersymmetric dynami- 
cal systems from given classical r-matrices for Lie superalgebras. 
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Consider a classical r-matrix r(x) E m ( g ) O ? i ( g ) ,  with ?r a finite-dimensional 
irreducible representation of the simple basic classical Lie superalgebra g. Let TM, M = 
1,2, . . . , dim g ,  be a basis of g in this representation, satisfying the graded commutation 
relations 

[TM, TN)=fLNTp 

r ( x ) = r M N ( x ) T M @ T N  (41) 

with f L N  the structure constants of g. Then 

and because r(x)  is even, r M N ( x ) = O  if [TM]+[TNl=l. 
To construct integrable systems using the r-matrix, we assume that a supermanifold 

Jt with a non-degenerate symplectic metric w is given. If XA, A = 1,2 , .  . . ,dim A, are 
the local coordinates of A, we assign a Poisson bracket structure (,) to A by requiring 
that for arhi!rary functions F ( X ) ,  G(.X) 

aF(x) dG(X) 
ax axA ' {F(X), G ( X ) } = o A E ( X ) ~  - 

Here w BA is the inverse of the metric U, which is symplectic, i.e. w A B  = -( -l)[A1[B'wBA, 
where [A] is defined to be 0 if A is an even index, and 1 if A is odd, and similarly 

satisfy 
for ['I, ,A poissox bracket s:rncture obeys the Jaco$iac idecC!y, thcs .A,-e :eq.;i:e "' to 

( -1)[AI[Rl,j  A BC + ( - 1 ) [ B I [ A l a  Ac+(-i)[cl[nla C o A B = O .  (43) 

Now we construct, from the X, dynamical variables SM =SM(X) ,  M = 
1,2 , .  . . ,dim g, such that 

{sM, s N > = ~ , G N s P .  (44) 

(45) Q(x) = SMr (x) TN. 

Then we define 
MN 

It follows directly from the fact that r ( x )  satisfies the graded classical Yang-Baxter 

(46) 

where in the first term on  the left-hand side of (46) we take the Poisson bracket among 
the SM in the Q and the tensor product 0 for the T N .  Now multiply both sides of 
(46) byn[Q(x)@I]"-l from theleft,and m[lOQ(xy)]"~'fromtheright with m, n > O ,  
then take the supertrace over the representation ?r(_p), The second term in (46) does 
not contribute anything, so we have 

Str(n[Q(x)@ I ] " - ' {Q(X)@Q(X~) ]~ [ IOQ(XY) ]"~ ' )  

equation !ha! 

{Q(x)O Q(xy)I+[Q(x)OI+ I@ Qh), r(y)l= 0 

={Str[Q"(x)l, ~ t r [Q"(xy) l l=0  O <  m, n E B'. (47) 

Therefore, we may regard the coefficients of the Laurant expansions of 

I&) =str[Qh(x)l  O < k E Z +  (48) 
as constants of motion of a certain dynamical system. If the number of the independent 
constants of motion is equal to half the dimension of the supermanifold, dim A, then 
this dynamical system is completely integrable. 
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It would be of interest to explicitly construct some integrable systems using this 
procedure; we hope to return to this elsewhere. 

6. Conclusion 

By examining the classical limit of the quantum supergroup equations developed in 
[6], we have constructed two sets of linear equations, the solutions of which automati- 
cally satisfy the graded classical Yang-Baxter equation. Their solutions have been 
obtained in explicit form and, although not covering all the classical r-matrices, they 
do constitute an important subclass of trigonometric and rational solutions of the 
graded classical Yang-Baxter equation, since they can be quantized to obtain quantum 
R-matrices, through the quantization of Lie superalgebras. As discussed in section 5 ,  
solutions of the graded classical Yang-Baxter equation may be applied to construct 
integrable supersymmetric dynamical systems. 

Equations (10) and (15) reveal a deep connection between the theory of Lie 
bi-superalgebras and the graded classical Yang-Baxter equation. In fact, if we regard 
them as defining co-bracket structures on Lie superalgebras, then the fact that their 
solutions automatically satisfy the graded classical Yang-Baxter equation simply fol- 
lows from the self-consistency of the co-bracket structures and their compatibility with 
the bracket structure of the Lie superalgebra. The theory of Lie bi-superalgebras will 
be developed more systematically in a separate paper [15], where the role of the graded 
classical Yang-Baxter equation in the theory of Lie bi-superalgebras is studied more 
closely. 
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